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The e® ect of edi¯ce load on magma ascent
beneath a volcano

By Virginie Pinel a n d Claude Jaupart

Laboratoire de Dynamique des Systµemes G¶eologiques,
Institut de Physique du Globe de Paris, 4 Place Jussieu,

75252 Paris Cedex 05, France

A volcanic edi­ ce exerts a large load at Earth’s surface and modi­ es the stress ­ eld at
depth. We investigate how this a¬ects upward dyke propagation towards the surface.
For given edi­ ce dimensions and pressure conditions in the deep magma source, there
is a critical density threshold above which magmas cannot reach the surface. This
density threshold is a decreasing function of edi­ ce height. For edi­ ce heights in the
range 0{3000 m, the density threshold spans the density range of common natural
magmas (between 2700 and 2300 kg m¡3). With time, di¬erentiation in a magma
chamber generates increasingly evolved magmas with decreasing densities, which
favours eruption. However, the edi­ ce grows simultaneously at the surface, which
counterbalances this e¬ect. The general tendency is to gradually prevent more and
more evolved magmas from reaching the surface. A volcanic edi­ ce acts as a magma
­ lter which prevents eruption and a¬ects the chemical evolution of the chamber
through its control on magma withdrawal. Thus, one may not consider that eruption
products are random samples of an evolving magma reservoir. The partial destruction
of an edi­ ce may lead to renewed eruption of primitive and dense magmas.

Keywords: magma ascent; dyke propagation; edi¯ce load

1. Introduction

A volcanic eruption is the end-result of a host of processes at depth, involving a
largely unknown plumbing system and storage regions where magma crystallizes
and di¬erentiates. It is possible to document how magma evolves through petrologi-
cal studies of erupted products. Over the lifetime of a volcano, lavas may not follow
a complete magmatic di¬erentiation series, showing that some magmas of interme-
diate composition do not get erupted. Such compositional gaps have been attributed
to several mechanisms and in particular to the dynamics of magma chamber evo-
lution. One must account for the eruption process because the chemical evolution
of a reservoir depends on its volume budget, involving replenishment with primitive
magmas and withdrawal of evolved magmas. There are failed eruptions, ending with
the emplacement of `cryptodomes’ at shallow levels beneath the surface, which sug-
gests that some magmas are expelled from the chamber but do not reach the surface.
This is clearly the case at older volcanoes where erosion commonly exposes intrusive
rocks, many of which did not feed surface eruptions. It is seldom feasible to deter-
mine the structure of a volcanic plumbing system, and hence ®uid dynamical models
have rarely been used for predicting whether or not magma of given composition
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may be erupted. Similarly, there have been few attempts to predict how fast magma
will travel from a storage region to the surface before the start of an eruption. Those
are key questions for eruption forecasting.

Current geophysical techniques have poor spatial resolution, and hence the best
constraints on the structure of volcanic systems come from the eruption record itself.
Over long periods of time, a volcanic system changes with important implications
for eruption behaviour. Two e¬ects come into play. One is that magma composition
changes due to storage and di¬erentiation in a reservoir. This factor has been the
subject of many investigations. The other factor has often been neglected and will
be the main topic of this study. As a volcanic system develops over time, a volcanic
edi­ ce grows at the top. A volcano represents a large surface load, corresponding for
example to 1 kbar for a 3000 m high edi­ ce, which a¬ects the local stress distribution
at depth. Most models of volcanic eruptions say little about magma chambers and
volcanic edi­ ces, and pertain to eruptions out of open conduits. In initial stages of
unrest, magma ascent is likely to proceed through fracturing, a mechanism which
may be responsible for quite complex behaviour (Meriaux & Jaupart 1995). Here,
we investigate the e¬ect of a volcanic edi­ ce on the stress ­ eld at depth and its
implications for fracture propagation. We study how a volcanic edi­ ce may prevent
the eruption of some magmas. We conclude the paper with a short discussion of
relevant volcanic phenomena.

2. Stress changes due to a volcanic edi¯ce

(a) Normal stress at the axis

The volcanic edi­ ce acts as a load applied at the Earth’s surface. For simplicity, we
consider an elastic half-space, which restricts our analysis to the upper crust. The
elastic medium is characterized by Poisson’s ratio, ¸ , and rigidity, G. We further
simplify the problem by considering that the edi­ ce is symmetric with respect to a
vertical axis, which is a valid approximation for many continental strato-volcanoes.
The elastic problem may be solved in cylindrical coordinates (r; ³ ; z) in which the two
components of shear stress ¼ r³ ; ¼ ³ z , and the component of the displacement vector
in the tangential direction u ³ , are zero everywhere. In this section, we choose z to
be zero at the surface and to increase downwards.

The edi­ ce can be characterized by three parameters: the maximum height hv, its
basal radius R and a shape factor. In order to evaluate the shape e¬ect, we have
considered two di¬erent edi­ ce geometries: a circular slab of uniform thickness and a
cone. The calculation method is outlined in Appendix A. Coordinates are scaled with
radius R. In the following, unless speci­ ed otherwise, coordinates are dimensionless.

For a slab, the normal stress component ¼ rr at the axis is given by

¼ rr

» m ghv
=

1

2
(1 + 2 ¸ ) ¡ 2(1 + ¸ )zp

1 + z2
+

z3

(1 + z2)3=2
; (2.1)

where g is the acceleration due to gravity and » m is the magma density. The vertical
stress distribution is represented in ­ gure 1. The maximum compression occurs at
the base of the edi­ ce. This stress changes sign at depth and becomes tensile. For
¸ = 0:25, the maximum tension occurs at dimensionless depth z =

p
5 and is very

small (less than 2% of the maximum compression). For a conical edi­ ce, the stress
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Figure 1. Normal stress ¼ r r due to a volcanic edi¯ce at the vertical axis as a function of depth.
Stress and depth are scaled with » m ghv and R, where hv and R are the edi¯ce height and radius,
respectively. The dashed and full lines are for slab-shaped and conical edi¯ces, respectively.

distribution may be obtained from the preceding result. The cone is built with slabs
of in­ nitesimal thicknesses and a straightforward integration yields

¼ rr

» m ghv
= 1

2
(1 + 2̧ ) ¡ (1 + ¸ )z ln

1 +
p

1 + z2

z
+

1

2

zp
1 + z2

; for z > 0;

¼ rr

» m ghv
= 1

2
(1 + 2̧ ); for z = 0:

(2.2)

Figure 1 shows both stress distributions as a function of depth. At the base of the
volcano, the axial normal stress does not depend on edi­ ce shape. The normal stress
decreases more rapidly with depth for a conical volcano than for a slab. Whatever the
edi­ ce shape, its e¬ect is negligible at dimensionless depths larger than 3 (­ gure 1).
This result can be used to evaluate the importance of conditions at large depths.
We have taken an elastic half-space and hence the model is strictly valid only for
lithospheres with elastic thicknesses larger than 3R.

(b) Stress distribution in a horizontal plane

In Appendix A, we calculate the radial pro­ les of the two diagonal components of
the in-plane components of the stress tensor, ¼ rr and ¼ ³ ³ (­ gure 2). For r=R < 0:2,
¼ rr varies by less that 5%. At r = 0, the radial component of displacement ur is zero,
which implies that ¼ rr(0; z) = ¼ ³ ³ (0; z). We denote by ¼ v(z) this common value. One
may show that this equality remains approximately valid for small radial distances
(r=R < 0:2). Thus, for conduits or fractures which are small compared with the
edi­ ce radius, one may assume a homogeneous stress ­ eld. The in-plane shear stress
¼ r³ is zero everywhere. Thus, in the vicinity of the axis, the in-plane stress tensor
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Figure 2. Normal stress ¼ r r as a function of radial distance for two di® erent depths below the
surface and for a slab-shaped edi¯ce. The dashed line shows the predictions of second-order
expansions, and crosses correspond to the full solutions from equation (A 11) in Appendix A.

¼ H is such that

¼ rr ¼ r³

¼ ³ r ¼ ³ ³
=

¼ v 0
0 ¼ v

: (2.3)

Thus, the normal stress against any small vertical interface is equal to ¼ v(z).

3. An equilibrium magma-¯lled fracture beneath an edi¯ce

We consider that the unperturbed regional stress ­ eld is lithostatic in rocks of con-
stant density » c, corresponding to vertical pressure distribution Pl(z). Other regional
stress ­ elds can be treated using the same basic framework.

(a) A critical density threshold for magmas

Here, we look for static equilibrium of a vertical magma-­ lled fracture issuing from
a reference level located at depth h (­ gure 3). This reference level is our starting
point for stress calculations and may be either the top of a magma reservoir or some
intermediate level in a longer fracture extending to greater depths. In the following,
for the purposes of clarity, we take the z-axis to be oriented positively upwards, with
z = 0 at the reference level. At this level, magma has developed overpressure ¢P0

with respect to the surroundings. In this problem, the fracture width and length are
very small compared with its height and one may consider deformation as purely
horizontal. This is a common assumption in studies of fracture propagation (Lister
1990a; b; Valko & Economides 1995). The analysis above has shown that, at depth
z, we may treat the fracture as if it were opening against a homogeneous pressure
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Figure 3. Diagram showing the basic set-up for the ° uid dynamical model of magma ascent,
with the main variables and parameters. Initial conditions are speci¯ed at some reference level,
which may be either the top of a magma reservoir or some intermediate level in a longer fracture
extending to greater depths.

­ eld Pl(z)+ ¼ v(z). In static conditions, this ­ ssure is deformed by an internal magma
overpressure, ¼ d ef , which is due to the combined e¬ects of the initial overpressure and
magma buoyancy. At the fracture walls, the normal stress balance reads as follows,

Pl(z) + ¼ v(z) + ¼ d ef(z) = Pm (z); (3.1)

where Pm (z) is the magma pressure at height z. In static conditions,

Pm (z) = Pl(0) + ¢P0 ¡ » m gz; (3.2)

and hence we obtain

¼ d ef = ¢P0 + ( » c ¡ » m )gz ¡ ¼ v: (3.3)

Magma may reach the surface if and only if the ­ ssure is held open for all z between
0 and h, that is to say if ¼ d ef > 0. If this condition is not satis­ ed, i.e. if the stress
due to the edi­ ce is large enough to balance buoyancy and the initial overpressure,
the static magma column cannot extend over the whole height h (­ gure 4). In such
conditions, magma will be trapped at depth. For given initial level and edi­ ce dimen-
sions, one may rewrite this condition in terms of a lower bound on magma density.
Magma may be erupted only if its density is less than the threshold value » crit such
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Figure 4. Schematic diagram showing vertical stress pro¯les beneath a volcanic edi¯ce. The
dashed line corresponds to the lithostatic stress ¯eld in the absence of the edi¯ce and the thick
continuous line shows the total stress pro¯le when there is an edi¯ce at the surface. Lines labelled
» 1 and » 2 correspond to the pressure distributions within a vertical fracture extending from a
magma chamber for two magma densities, such that » 1 > » 2 . The maximum density for eruption
is such that, at the base of the edi¯ce, the fracture pressure is equal to the ambient stress.

that

» crit = 2
¢P0 + » cgh

g(hv(1 + 2 ¸ ) + 2h)
: (3.4)

This threshold density value is independent of edi­ ce shape and radius, and its
dependence on edi­ ce height is shown in ­ gure 5.

Taking an overpressure of 100 bar in a 10 km deep reservoir, a 500 m high vol-
cano (which, for a 30¯ slope strato-volcano, corresponds to only 0.4 km3 of erupted
products) will cause a compressive stress large enough to prevent the densest mag-
mas (typically basalts) from reaching the surface. A higher volcanic edi­ ce prevents
the ascent of lighter magmas. Magma densities have values in the 2300{2700 kg m¡3

range, and a usual trend is for magma density to decrease with the degree of di¬er-
entiation. As shown by ­ gure 5, edi­ ce heights which are common on Earth are able
to stop the ascent of many natural magmas.

(b) Discussion

We have only considered dry melt, whereas most natural magmas contain signif-
icant amounts of volatiles. Gas exsolution during ascent leads to a density decrease
for the rising mixture and hence to a buoyancy increase. Thus, with magmatic gases
added, the ability of a magma to reach the surface is enhanced, and the threshold
density is higher. We have calculated the critical density for di¬erent gas contents in
Appendix B, and ­ nd that a volcanic edi­ ce remains able to prevent many natural
magmas from erupting (­ gure 6).
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Figure 5. Critical magma density threshold as a function of edi¯ce height. The critical density
depends on several variables, ¢ P0 , h, » c and ¸ (equation (3.4)), whose values are given in table 1.
The line separates two domains: to the left, magma can reach the surface and erupt, to the right,
magma gets trapped beneath the surface. The two crosses indicate the set of conditions used in
dynamical calculations of dyke propagation (table 1).
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Figure 6. Critical density as a function of edi¯ce height for di® erent dissolved water contents.
Numbers along the curves are values of water concentration. The calculation method is explained
in Appendix B.

According to this model, when eruptions are fed from a magma reservoir, the
ability of an edi­ ce to behave as a density ­ lter throughout the lifetime of the volcanic
system depends on the depth and size of the reservoir. The depth of the reservoir
determines the magnitude of the total buoyancy force available. The size of the
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reservoir a¬ects the time-variation of the di¬erent parameters (¢P0, hv, » m ) because
it acts on the amount of magma available to build the volcano and in®uences the
rate of magmatic di¬erentiation.

4. Fracture propagation beneath a volcano

We now evaluate the e¬ect of the volcanic edi­ ce on magma transport. We consider
a magma-­ lled fracture which rises towards Earth’s surface. As shown by many
authors, we may neglect the strength of the surrounding rocks in the force balance
for dyke propagation, and hence do not treat stress singularity at the tip (Lister
1990a; b). We focus on the interplay between buoyancy, viscous e¬ects and elastic
stresses. For the sake of simplicity, we consider a fracture of given length l = 2a,
which is being opened due to magma pressure. This ­ ssure is opened providing
the deformation stress ¼ d ef is positive. We rewrite the normal stress balance at the
fracture walls with the added e¬ect of ®ow-induced stresses. The deformation stress
is now given by

¼ d ef = ¢P0 + ( » c ¡ » m )gz ¡ ¼ v + p; (4.1)

where p is the head loss due to ®ow in the propagating fracture. Under this applied
stress, the fracture opens and adopts an elliptical cross-section with semi-axes a and
b. In this case, ¼ d ef is equal to (Mushkhelishvili 1963)

¼ d ef(z; t) =
G

1 ¡ ¸
b(z; t) a +

(1 ¡ 2 ¸ )b(z; t)

2(1 ¡ ¸ )

¡1

: (4.2)

In this problem, b(z; t) ½ a, and hence

¼ d ef(z; t) º G

1 ¡ ¸

b(z; t)

a
: (4.3)

The magma is considered as a Newtonian, viscous and incompressible ®uid. For
typical volcanic conditions, ®ow proceeds in a laminar regime. The open fracture
has an elliptical cross-section and the momentum equation may be integrated in the
horizontal plane at each height z to solve for the local volumetric ®ux rate (White
1991):

q(z; t) = ¡ º

4 ·

a3b3

a2 + b2

@p(z; t)

@z
; (4.4)

where · is the magma viscosity. Using again the fact that b(z; t) ½ a, this may be
simpli­ ed as follows:

q(z; t) = ¡ º

4 ·

@p(z; t)

@z
ab3: (4.5)

Applying the equation of continuity, we obtain

@º ab(z; t)

@t
= ¡ @q(z; t)

@z
: (4.6)
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Using equations (4.1), (4.3), (4.5) and (4.6), the fracture width b is the solution of
the following equation:

@b(z; t)

@t
= ¡ ( » c ¡ » m )g

4 ·

@b3

@z
+

G

16 · a(1 ¡ ¸ )

@2b4

@z2
+

1

4 ·

@

@z

d ¼ v

dz
b3 : (4.7)

We present calculations for a conical edi­ ce, such that ¼ v is given by equation
(2.2). Calculations with a slab do not lead to signi­ cant di¬erences, which shows
that the shape of the edi­ ce plays a minor role. We scale pressures by the chamber
overpressure, ¢P0, and depth z by the reservoir depth h. We obtain the following
scales for time, ®ux and ­ ssure width:

[t] =
16 · h2G2

¢P 3
0 a2(1 ¡ ¸ )2

; (4.8)

[Q] =
(1 ¡ ¸ )4¢P 5

0 a4

16G4 · h
; (4.9)

[b] =
¢P0a(1 ¡ ¸ )

G
: (4.10)

The time-scale [t] is for opening the ­ ssure over length h with a uniform overpressure
equal to ¢P0. In reality, pressures are everywhere smaller than this, and hence this
time-scale provides an upper bound for the rise time over height h. The length-scale
[b] is the fracture width due to an overpressure ¢P0. Three dimensionless numbers
appear. R1 = ( » m ¡ » c)gh=¢P0 and R2 = ( » m ghv)=¢P0 characterize the magnitudes
of buoyancy force and edi­ ce stress scaled to the initial overpressure. Clearly, the
key factors are the relative magnitudes of the driving pressure terms and the edi­ ce-
induced stress. The dimensionless number R3 = R=h provides a measure of the extent
of the zone a¬ected by the edi­ ce stress. The dimensionless problem to solve is

@b(z; t)

@t
= 4R1

@b3

@z
+

@2b4

@z2
+ 4

@

@z

d ¼ v

dz
b3 ;

¼ v(z) = R2
1
2
(1 + 2 ¸ ) +

(1 ¡ z)

2 R2
3 + (1 ¡ z)2

¡ R2

R3
(1 + ¸ )(1 ¡ z) ln

R3 + R2
3 + (1 ¡ z)2

1 ¡ z
;

b(z = 0;t) = 1 ¡ ¼ v(z = 0): (4.11)

This problem was solved numerically with a semi-implicit ­ nite di¬erence scheme
with Dirichlet boundary conditions. The fracture half-width b(0) at the reference
level is ­ xed by the initial overpressure. Convergence was veri­ ed by comparing runs
with di¬erent space- and time-steps. We checked that mass conservation was satis­ ed
on the scale of the whole dyke, which requires the instantaneous volume change to
be equal to the basal ®ux.

We ­ rst discuss results obtained for the case of magma with a density slightly
smaller than the threshold density. The parameters used are given in table 1. The
calculations were stopped when the dyke was 100 m from the surface. We choose not
to carry out calculations within the edi­ ce itself because it may not behave as an
elastic solid. However, the same basic physical principles apply. Figure 7 shows how
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Table 1. Parameters and physical properties used in the calculations

Geometrical parameters (m)

depth of the reservoir h 10 000

edi¯ce radius R 3000

edi¯ce height hv 1500 (case 1) or 1200 (case 2)

half-length of the fracture a 100

Physical properties

Poisson’ s ratio ¸ 0:25

rigidity (Pa) G 1:125 £ 109

density of surrounding rocks (kg m ¡ 3 ) » c 2700

density of magma (kg m ¡ 3 ) » m 2510 (case 1) or 2600 (case 2)

initial overpressure (Pa) ¢ P0 107

viscosity (Pa s) · 105

Scale

time-scale (s) [t] 3:6 107

° ux scale (m3 s ¡ 1 ) [Q] 1:23 £10¡ 4

¯ssure width scale (m) [b] 0:67

front height
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Figure 7. Dimensionless fracture tip velocity as a function of height above the reference level for
magma density smaller than the threshold value. Parameters for these calculations correspond
to case 1 in table 1.

the propagation rate evolves as the fracture rises. At great depth, the presence of
an edi­ ce tends to enhance the propagation rate because it generates tension, but
this is a small e¬ect. When the dyke reaches a depth close to the volcano radius R,
the propagation rate drops markedly. Just before the dyke reaches the surface, this
rate is 100 times smaller than the initial value. Figure 8 shows how the dyke shape
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Figure 8. Dimensionless fracture width as a function of height at di® erent times for magma
density smaller than the threshold value. Note the in° ated nose region which develops when the
fracture tip is at shallow depth beneath the edi¯ce. Parameters for these calculations correspond
to case 1 in table 1.

evolves with time. As the propagation rate decreases, the total dyke volume keeps
on increasing, mostly due to deformation near the dyke tip. As the dyke gets close
to the surface, the supply rate diminishes markedly and the dyke volume increases
at a reduced rate (­ gure 9).

For magma densities above the threshold value, magma is too dense to reach the
surface and we ­ nd that the ®ow rate decreases until a state of equilibrium is achieved
(­ gure 10). The propagation rate drops to very small values as the fracture tip gets
close to the equilibrium height given by the static calculations developed above.
At such late stages of dyke ascent, however, magma is still ®owing into the open
fracture and the volume of stored magma stored keeps on increasing (­ gure 11). The
new magma ponds at the tip of the fracture, which develops a permanent in®ated
nose reminiscent of cryptodome structures (­ gure 12). In this situation, a signi­ cant
volume of magma may get stored beneath the surface.

5. Implications for eruption behaviour

A detailed comparison of the predictions of our model to natural volcanoes is outside
the scope of this paper, and we restrict ourselves to a few salient observations. Our
aim is to evaluate how one may reconsider the ­ eld evidence in the light of the simple
physical principles shown above.
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Figure 9. Dimensionless magma volume within the fracture as a function of time for magma
density smaller than the threshold value. Parameters for these calculations correspond to case 1
in table 1. Note that the rate of volume increase slows down markedly when the fracture tip is
at shallow depth beneath the edi¯ce.
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Figure 10. Dimensionless tip height as a function of dimensionless time for magma density lar-
ger than the threshold value. Parameters for these calculations correspond to case 2 in table 1.

(a) Mt St Helens 1980

The chronology of events preceding the 18 May 1980 eruption of Mt St Helens sup-
ports the inferences drawn from the theory. Magma was issued from a deep reservoir
located at a depth of approximately 8 km (Rutherford & Hill 1993). The ­ rst sign of
unrest was an increase of local seismicity levels on March 15 (Endo et al . 1981). On

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The e® ect of edi¯ce load on magma ascent beneath a volcano 1527

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

dimensionless time

vo
lu

m
e

m >  r
crit

r

Figure 11. Magma volume within the fracture as a function of dimensionless time for magma
density larger than the threshold value. The magma volume is shown as the fraction of the ¯nal
value achieved when mechanical equilibrium conditions are established. The volume of stored
magma keeps on increasing for times larger than 0.2, even though the fracture tip has stopped
rising (see ¯gure 10). Parameters for these calculations correspond to case 2 in table 1.

20 March seismic events showed that magma was already 4 km beneath the surface.
March 27 marked the onset of phreatic activity and a bulge started to grow on the
edi­ ce ®ank. From the dimensions of the bulge and the distribution of seismicity,
magma was probably no more than 1 km below the surface (Moore & Albee 1981).
It then took more than 20 days for the eruption proper. This sequence of events
clearly indicates that the ascent rate decreased with time, as magma was getting
closer and closer to the surface. Magma took a few days to rise over 5 or 6 km, an
extra week for the next 3 or 4 km, and then three weeks for the last kilometre or
so. A fracture rising through an elastic medium in lithostatic equilibrium (i.e. with
no edi­ ce) would not exhibit such behaviour. The decreasing rates of upward prop-
agation and cryptodome growth, as well as the apparent stalling of the magma near
the surface, are consistent with our results (­ gure 7). The eruption was triggered by
®ank failure and may not have happened if the ®ank had held fast.

At Mt St Helens, ­ eld evidence suggests that the fracture had almost stopped rising
in early May. Petrological and isotopic data also indicate magma arrest at shallow
levels (Hoblitt & Harmon 1993; Cashman & Blundy, this issue). Interestingly, there
is also evidence for temporary magma storage at small depths beneath the surface
during the 1991 eruption of Mt Pinatubo (Cashman & Blundy, this issue).

(b) The volcanic edi¯ce as an evolving density ¯lter

At Mount Mazama, Oregon, the various erupted magmas are not distributed in a
random fashion. The edi­ ce is made of intermediate to evolved lavas, dacite, andesite
and rhyodacite. Primitive magmas were available throughout the volcano history,
as shown by the rather abundant ®ows of olivine-bearing basalt or ma­ c andesite
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Figure 12. Dimensionless fracture width as a function of height at di® erent times for magma
density larger than the threshold value. Parameters for these calculations correspond to case 2
in table 1.

found a few kilometres from the caldera (Bacon 1983). These magmas have the same
compositions as the parent magmas for the di¬erentiated products, but they have
not been erupted through the focal region (Bacon & Druitt 1988). This has been
called the `shadow zone’ e¬ect (Bacon 1985). One explanation for this is that the
ma­ c magmas cannot go through the shallow magmatic reservoir beneath the edi­ ce
(Bacon 1985). However, this does not explain why there was a reservoir at this
particular location and not elsewhere, where many ma­ c intrusions are documented.
We suggest that, in fact, the reservoir grew because an edi­ ce was being built at the
surface.

Another interesting case is provided by Mount Adams, southern Washington. This
volcano shows the same basic features as Mount Mazama, with andesitic{dacitic lavas
in the focal region and dominantly basaltic lavas at the periphery, more than 5 km
from the summit. Di¬erentiation was achieved in small magma batches (Hildreth &
Lanphere 1994), which indicates that there was never a large reservoir beneath the
volcano. Thus, in this case, it is di¯ cult to rely on the shadow zone e¬ect. Further
clues are that, at Mount Adams, between 940 and 520 ka, 80% of the products are
basaltic, and that the proportion of andesite only starts increasing with the ­ rst
cone-building episode (Hildreth & Lanphere 1994).
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(c) Destruction of the volcanic edi¯ce

The ­ lter e¬ect of the volcanic edi­ ce can be illustrated in reverse when the
height of the edi­ ce gets reduced through landslides or large explosive eruptions.
One expects a close temporal association between such events and a return to more
primitive, and hence denser, lavas. At Mount Mazama, the 7000 yr BP climactic
eruption destroyed the edi­ ce. This volcano had only erupted rhyodacite lavas for
several thousand years before this catastrophe, and started to erupt ma­ c andesite
afterwards (Bacon 1983). At Mt St Helens, the Pine Creek period (3000{2500 yr BP)
ended with large landslides due to massive slope failure (Hausback & Swanson 1990).
This eruptive period involved dacitic lavas exclusively and was followed by the onset
of andesitic and basaltic volcanism in the Castle Creek period.

6. Conclusion

Our calculations show that a volcanic edi­ ce acts to prevent dense magmas from
reaching the surface. Furthermore, as the edi­ ce grows, the critical density changes,
and hence so do the magma compositions which may not get erupted. The key point
is that edi­ ce growth and magmatic di¬erentiation work in parallel. As crystalliza-
tion and di¬erentiation proceed, the residual magma usually tends to become less
dense, which favours eruption. However, at the same time, the edi­ ce grows, which
counteracts the e¬ect of the chemical change. One may not consider that an evolving
magma reservoir gets sampled randomly by eruptions. The edi­ ce acts as a regulating
valve, which sets magmatic di¬erentiation on a speci­ c course.

Appendix A. Stresses due to a volcanic edi¯ce

We consider a slab of thickness hv and radius R at the Earth’s surface. z is the
vertical coordinate, oriented positively downwards. At z = 0, boundary conditions
are as follows:

¼ zz(z = 0;r) = » m ghv for r R;

= 0 for r > R; (A 1)

¼ rz(z = 0;r) = 0; (A 2)

¼ ij ­ nite as z tends to in­ nity; (A 3)

where » m is the average density of material in the edi­ ce. Our sign convention is
such that a compression corresponds to a positive stress. In cylindrical coordinates,
we use the method outlined by Sneddon (1951). The scalar function © is such that

ur = ¡ ¶ + ·

·

@2 ©

@r@z
; (A 4)

uz =
¶ + 2 ·

·
r2 © ¡ ¶ + ·

·

@2 ©

@z2
: (A 5)

© is a solution of the biharmonic equation,

r4 © = 0; (A 6)
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with the relevant boundary conditions. Introducing the zero-order Hankel transform,

G( ¹ ; z) =
1

0

r© (r; z)J0( ¹ r) d ¹ ; (A 7)

the biharmonic equation becomes

@2

@z2
¡ ¹ 2

2

G( ¹ ; z) = 0; (A 8)

which has the following solution:

G( ¹ ; z) = (A + Bz)e¡ ¹ z : (A 9)

The constants A and B are found through the boundary conditions on ¼ rz and ¼ zz:

G( ¹ ; z) =
» m ghvR

2 ¹ 3( ¶ + · )
J1(R¹ )

¶

( ¶ + · ) ¹
+ z e¡z¹ : (A 10)

Using (A 10) and Hooke’s law, ¼ rr is given by

¼ rr =
1

0

f( ¹ ; z)J0( ¹ r) d ¹ +
1

0

g( ¹ ; z)
J1( ¹ r)

r
d ¹ (A 11)

where

f (¹ ; z) = » m ghvRJ1( ¹ l)e¡ ¹ z(1 ¡ ¹ z); (A 12)

g(¹ ; z) = » m ghvRJ1( ¹ l)e¡ ¹ z z ¡ ·

¹ ( ¶ + · )
: (A 13)

These expressions have been used to calculate stresses everywhere. We are interested
in stresses near the axis, for small r, and hence expand the above equation for r º 0:

¼ rr(r; z) = ¼ rr(0; z) + r
@¼ rr

@r r = 0

+
r2

2

@2 ¼ rr

@r2
r = 0

+ ; (A 14)

which leads to

¼ rr(r; z) =
1

0

f( ¹ ; z)(J0(0) + r¹ _J0(0) + 1
2
r2 ¹ 2 �J0(0)) d ¹

+
1

0

g( ¹ ; z) ¹ lim
r ! 0

J1( ¹ r)

¹ r
+ r¹ lim

r ! 0

@J1=¹ r

@ ¹ r
+

r2 ¹ 2

2
lim
r ! 0

@2J1=¹ r

@( ¹ r)2
d ¹ + :

(A 15)

We use the polynomial expansions of the various Bessel functions:

J0(0) = 1; lim
x! 0

J1(x)

x
= 0:5;

_J0(0) = 0; lim
x ! 0

@J1(x)=x

@x
= 0;

�J0(0) = ¡ 2
2:24 : : :

9
; lim

x ! 0

@2J1(x)=x

@x2
= ¡ 2

0:56 : : :

9
:

(A 16)
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Terms of order 1 are thus zero, which was expected as the stress has an extremum
at the axis. To extend the expansion to second order, we use the following result:

1

0

e¡ ¹ zJ1(R¹ ) =
1

R
¡ z

R
p

R2 + z2
(A 17)

and its derivatives with respect to z. Using dimensionless variables, as in the main
text, we ­ nd that, at zero order, the two diagonal stress components are identical:

¼ 0
rr(z) = ¼ 0

³ ³ (z) =
1

2
(1 + 2 ¸ ) ¡ 2(1 + ¸ )zp

1 + z2
+

z3

(1 + z2)3=2
: (A 18)

Second-order expansions are slightly di¬erent:

¼ rr(z) = ¼ 0
rr(z) +

z

3

0:56(1 ¡ 2 ¸ ) ¡ 2:24

(1 + z2)5=2
+

(2:24 ¡ 0:56)(4z2 ¡ 1)

(1 + z2)7=2
r2 + ;

(A 19)

¼ ³ ³ (z) = ¼ 0
³ ³ (z) +

z

3

¡ 0:56(1 ¡ 2 ¸ ) ¡ 2:24 ¤ 4 ¸

(1 + z2)5=2
+

0:56(4z2 ¡ 1)

(1 + z2)7=2
r2 + : (A 20)

These results emphasize that the stresses vary by negligible amounts for small r.
In practice, there are no signi­ cant variations for r 0:2. Figure 2 compares the full
values with predictions from the second-order expansion, and it may be seen that
they agree very well up to r º 0:5.

Appendix B. Gas phase in a static magma column

The pressure inside a static magma-­ lled fracture obeys the hydrostatic equation:

dP

dz
= ¡ » m g: (B 1)

If the gas phase is present with mass fraction xg, the vesicular magma density is

1

» m

=
xg

» g

+
1 ¡ xg

» m o

; (B 2)

where » g and » m o are the densities of gas and melt phases, respectively. For magma
with given volatile concentration xi, corresponding to saturation pressure P s , the
mass fraction of gas at pressure P less than P s is given by

xg º x(P s ) ¡ x(P ): (B 3)

We use the ideal gas law, which is appropriate for crustal conditions,

» g =
MP

RT
; (B 4)

with M the molar mass and R the perfect gas constant. Finally, we take the usual
empirical solubility law,

x = sP n; (B 5)

with s = 4:11 £ 10¡6 and n = 0:5.
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For given xi, we integrate the pressure equation up the magma column and obtain
the vertical pro­ les of gas content and density. The gas phase acts to decrease the
density of magma with respect to the pure melt phase, and hence to enhance buoy-
ancy. We calculate the threshold melt density value as a function of edi­ ce height,
as in the main text. Figure 6 shows sample calculations for h = 104 m, ¢P0 = 107,
» c = 2700 kg m¡3 and various values of xi. An initial water concentration of 1 wt%
is too small to a¬ect the results signi­ cantly. With increasing water content, for a
given edi­ ce height, the threshold melt density increases. However, one may see that
the critical density remains within the range of natural magmas, which demonstrates
that the `­ lter’ e¬ect of the edi­ ce still operates.

We thank Stephen Sparks and Jurgen Neuberg for stimulating discussions and comments, and
referees for their suggestions. Support for this study was provided by INSU/CNRS (PNRN
programme).
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